Political Economy of Development

Week 2: Introduction to "Development Theory"

Instructor: Chris Blattman

"Development theories" not "development theory"

- Typically departs from growth theory setup:
 - Don't necessarily start with $Y = A \cdot F(K, HL)$
- No unifying framework or assumptions
 - Particularistic models and ideas
 - Do not add up so easily
- Each model or empirical exercise tends to focus on a particular rigidity, constraint, or market failure

A crude typology

#2 and #3 get us into the realm of "development theory"

1. Neoclassical view

- Function of different starting points and possibly different steady states
 - e.g. Solow-Swan model
 - Endogenous growth models (e.g. AK model)
- Evidence not necessarily consistent with predictions of the models
 - e.g. higher marginal returns to factors and higher growth rates in poor countries)
- Overall, may hold for middle- and high-income countries

2. Poverty trap

- Multiple equilibria
- Marginal changes in factors not sustained
 - Equilbria are "attractive"
- Key features: Some form of increasing returns, plus some form of constraint

3. Rigidities, constraints, and the process of structural change

- Not trapped, but structural change, factor accumulation, or technical advancement impeded and slowed
- A middle view between neoclassical and poverty trap?

A. From neoclassical growth to poverty traps

= Increasing returns over some range

Recall the dynamics of the Solow model

• Output per worker is a function of capital

y = Af(k)

• Capital per worker follows a simple law of motion:

$$\dot{k} = sy - (n + \delta)k$$

• Combining these, the dynamics of the whole model are described by:

$$\dot{k} = sAf(k) - (n+\delta)k$$

• In discrete time:

$$k_{t+1} - k_t = sAf(k_t) - (n+\delta)k_t$$

or

$$k_{t+1} = k_t + sAf(k_t) - (n+\delta)k_t$$

The transition diagram for Solow (without tech growth) Bends inwards (concave) because of diminishing returns to k

Stable equilibrium: Crosses from above

This will be any line with (locally) slope less than 1 i.e. Diminishing returns

Unstable equilibrium: crosses from below

Slope greater than 1, or (locally) increasing returns

But why should k_{t+1} be a concave function of k_t ?

What could lead the returns to capital to be convex (over some range)?

- Knowledge spillovers, learning by doing
 e.g. AK model
- Shared investments (infrastructure and other "linkages")
- Fixed start-up cost of capital-intensive technologies

A stylized example of multiple equilibria: $k_{t+1} = f(k_t)$: An equation of motion with both diminishing and increasing returns

The key feature of an equilibrium is that it is "attractive": A marginal increase in *X* sends you back

"Big push" stories

Two main ingredients:

- 1. Some source of increasing returns
- 2. Some large change in fundamentals breaks you out of the low level equilibrium

The classic Big Push story: Industrialization

- Proposed by development economists such as Rosenstein-Rodan and Hirschman, formalized by Murphy, Shleifer, Vishny
 - See Krugman reading for a simple overview
- Root of trap:
 - Industrialization requires large initial investments (larger than any one firm), and so firms only industrialize if most others do
- Source of IRTS:
 - Demand and supply externalities
 - In supply/production: e.g. knowledge spillovers, infrastructure
 - In demand: Higher wages mean greater purchasing
- Nature of big push:
 - Coordinated investment (by government?)

What intervention can do when there are multiple equilibria An extremely influential idea in policy

Some (oversimplified) examples

- Soviets
 - Root of trap: Concentrated, inefficient ownership of means of production (e.g. quasi-feudal agriculture)
 - Source of IRTS: Externalities in revolution
 - Big push: Kill czar, collectivization, command economy, forced savings and investment
- Jeff Sachs:
 - Root of trap: Bad geography and low human capital imply low returns to investment, low trade and specialization
 - Source of IRTS: Complementarities between human capital investments, production of trade-able goods
 - **Big push:** Aid, favorable trade policy, export orientation

Other (oversimplified) examples

- Max Weber and "the spirit of capitalism"
 - Root of trap: Cultural preference for leisure, godliness through observance
 - **Source of IR:** Supply and demand externalities?
 - Big push: Protestants start to believe that godliness comes (or is revealed by) hard work and economic success
- Malthusian Trap
 - Root of trap: Population increases with income
 - Source of IR: Preference for children decreases with income (a discontinuity in population-income relationship)
 - **Big push:** Rapid technical change (e.g. chance discoveries)

How is the low equilibria "attractive" in these stylized examples?

The stylized S-curve is just one example Most of the time we don't know the shape of the curve (all speculation)

Azariadis & Stachurski (2005), Figure 7

To see the importance of initial conditions, imagine a stochastic aggregate production function

 $Y_t = AK_t^{\alpha}L_t^{1-\alpha}\xi_t$, ξ_t is a serially uncorrelated shock

Azariadis & Stachurski (2005), Figures 2 and 3

We will see convergence in the neoclassical model, regardless of differences in initial conditions

Ergodicity in the convex model

Azariadis & Stachurski (2005), Figures 4 and 5

With IRTS over some range, initial conditions matter "Ergodic" = converging to a stationary distribution

 $Y_t = A(K)K_t^{\alpha}L_t^{1-\alpha}\xi_t$, ξ_t is a serially uncorrelated shock

Azariadis & Stachurski (2005), Figure 8

Convergence to the bimodal distribution over time, illustrated Initial difference tend to be magnified over time (convergence club effect)

Ergodicity under increasing returns

capital per effective worker

Azariadis & Stachurski (2005), Figure 9

Persistence of historical conditions Simulated time series of four fictional economies, one initially rich three poor *Large upper basin of attraction*

Azariadis & Stachurski (2005), Figures 10 and 11

Casual observation of cross-country income looks similar As we will see, however, this is not a convincing test

Poverty traps: Not just a macro-level story

Why might poor people face Sshaped income today/tomorrow curves?

Multiple equilibria at the household level e.g. Nutrition (see Banerjee and Duflo 2012)

Another common example (with more supporting evidence) is the role of credit market failure

- At least some of the poor have high potential returns to investment (*r*)
 - e.g. de Mel et al 2008, Udry and Anagol 2008, Kremer et al 2011
- Some investments may be lumpy
 - E.g. fixed costs (F)
 - General case: "production non-convexity" (IRTS)
- *If* financial markets work well *and* people are "well-behaved", then the poor can make these investments
 - Profitable to borrow if market interest rate i < r
 - Or can save at interest rate *i* until *F* is accumulated

Unfortunately markets (and people) may not function so smoothly

- Credit market failure
 - Poor countries have weak, sparse banking sectors
 - Information asymmetries are large (no institutions to mitigate)
 - The poor have little collateral (and debt contracts may be hard to enforce)
 - MFIs or moneylenders typically lend for short spans (2-3 months)
 - Even MFI interest rates are prohibitively high: 10% per mo. = >200% per annum
- Other financial market failure
 - Many savings institutions do not allow saving for >2-3 months (e.g. ROSCAs)
 - High cost of saving \rightarrow Interest rate on savings is negative
 - High inflation \rightarrow Real interest rate on cash savings negative
 - Most long-term savings instruments (e.g. land, housing, livestock) are lumpy, illiquid, and may yield a low return
- Other "failures"
 - Self control problems over small amounts of money (e.g. Banerjee and Mullainathan 2010)
 - Pressure to share with others in ones social network (e.g. Platteau 2000, di Falco and Bulte 2009)

A stylized example of "occupational choice" Fixed costs cause a discontinuity in production function

A simple formal model

Based on Galor and Zeria 1993, Banerjee Newman 1993, summarized in A&S 2005

- Households are "dynasties"
 - They live for one period, then are succeeded by a child
 - They care about their own consumption and that of their child
 - They consume (1θ) of their income y, where $0 < \theta < 1$
 - They leave a bequest $b = \theta y$ for their children

(We will derive this consumption and "savings" from utility maximization in the problem set)

- Households have initial wealth x_t
 - This is simply the parent's bequest: $x_{t+1} = \theta y_t$
 - Hence, higher income today, higher wealth of future generation
- Two occupations open to all
 - Unskilled, paying w
 - Skilled, paying W > w
 - But the skilled occupation requires a fixed cost F be paid

Case I: No borrowing or lending

• Income depends on whether initial wealth exceeds the fixed cost:

$$y_t = x_t + w \quad \text{if} \quad x < F$$
$$y_t = x_t - F + W \quad \text{if} \quad x \ge F$$

Assuming the high-skill occupation is more profitable even after paying *F*: $x_t + w \le x_t - F + W$ or $w \le W - F$

• Recall
$$x_{t+1} = \theta y_t$$
. Thus,
 $x_{t+1} = \theta y_t = \theta (x_t + w)$ if $x < F$
 $x_{t+1} = \theta y_t = \theta (x_t - F + W)$ if $x \ge F$

Transition diagram

Now think about an economy of these dynasties The role of inequality

- Each dynasty is self-contained (no externalities) and so individual dynamics contain all the information we need for the whole economy
- Different inequality/poverty levels will lead to different levels of long run aggregate development
 - Imagine two economies, each with population normalized to 1
 - One has fraction N with x < F, the other has fraction M > N
 - In equilibrium:

$$Y_N = \Sigma y_t = N(x_L + w) + (1 - N)(x_H + W - F)$$

$$Y_M = \Sigma y_t = M(x_L + w) + (1 - M)(x_H + W - F)$$

- $Y_M > Y_N$: Illustrates the importance of the distribution of income in an economy with imperfect credit markets (though not a general result)
- Note: There is a <u>multiplicity of steady states</u> for these economies, for every value of $0 \le N \le 1$

Could also imagine a model where there skill-biased technical change e.g. What if $W_{t+1} = (1 + g)W_t$ but $w_{t+1} = w_t$?

Case II: With borrowing and lending in imperfect markets (for problem set)

- Now assume you can lend at rate *r* but borrow at rate i > r
 - Cost of monitoring loans creates a wedge between the lending and borrowing rates
 - For simplicity we will assume r = 0
- Income now given by the following:
 - $y_t = x_t + w$ ifx < F and does not invest F $y_t = (x_t F)(1 + i) + W$ ifx < F and invests F $y_t = x_t F + W$ if $x \ge F$
- We still assume the high-skill occupation is more profitable after paying *F*. Now we also assume that agents with *x* < *F* will choose the same if the returns are greater.
- We can solve for x_{t+1} in terms of x_t in each case and get transition diagram

Transition diagram

What do we learn from such a model?

- Role of poverty and inequality in affecting aggregate growth under imperfect markets
 - Income redistribution has ambiguous effects, depending on where in basin of attraction it pushes people
- Testable predictions (see next week's papers)
 - Association between initial wealth and occupational choice, long run income and income dynamics
 - High potential returns to capital for the poor
 - Existence of production convexities plus credit constraints
 - Impacts of improving credit markets, or of access to capital
- Distinction between multiple steady states and multiple equilibria

Multiple equilibria versus multiple SS

- Each SS has multiple equilibria, and there are many SS
- Drawbacks to a static multiple equilibrium model (e.g. Big Push, as presented)
 - Indeterminate: Nothing determines what equilibrium you will end up in, other than hand waving about coordination or expectations
 - There is no history
 - Even if you made dynamic (i.e. repeated the interaction) history doesn't matter
 - Makes no difference whether you were in a good equilibrium last period or spent 100 periods in a bad equilibrium
 - Basically, feels dissatisfying
- Multiple SS avoid some of these issues because initial conditions determine a unique outcome

Other extensions

- From partial equilibrium to general equilibrium
 - Capital and labor markets must clear (endogenous wages and interest rates)
 - These in turn become functions of income inequality and initial distributions
 - e.g. Banerjee and Newman 1993, Galor and Zeira 1993, Aghion and Bolton 1997
- Addition of noise into income dynamics
- Inter-temporal household models (rather than dynasties)
- Introduction of risk and insurance markets
- Introduction of "behavioral " considerations

A belief in poverty traps leads to very different policy implications

The poverty trap (multiple equilibria) goes with a "transformational" perspective on development

The marginalist approach (a single equilibrium) goes with a more "marginal" perspective

B. Evidence of Poverty traps

Cross-country growth in late 20th century consistent with poverty traps But far from conclusive

Evidence on macro-level traps

- Pretty weak (says Easterly 2008)
 - Poorest countries change all the time (few stay in "traps")
 - Initially poor countries no more likely to have zero or lower growth than middle income ones
 - Of course, not clear this is the right horizon
 - Big increases in aid do not seem to result in big jumps in growth
- Not clear that post-2000 growth patterns support the same conclusions

Macro-level poverty traps have fallen out of favor in economics

- Lack clear, testable quantitative implications
 - Hard to distinguish from mere rigidities or constraints/ different fundamentals
 - Recall that constraints are not "poverty traps"
- Not clear how long the long run is
 - Especially in "new" post-colonial nations

And this certainly does not look like a successful big push (though not a fair test)

What about the micro level? e.g. Banerjee and Duflo 2012

- Growing base of evidence of <u>some</u> poverty traps for the poorest
 - Growing base of evidence for:
 - Self-control and social constraints
 - High returns to capital among the poor
 - Adverse effect of credit and risk market imperfections
 - More ambiguous evidence of fixed costs and a "trap"
 - Evidence less compelling for other purported traps
 - E.g. nutrition
- But unclear whether a "big push" does not necessarily lead to a virtuous cycle of growth
 - Change is more incremental

Micro-level investigations of the entrapment effects of politics and institutions could take you a long way

- Examples:
 - Kin and sharing norms (expanding)
 - Public goods and capacity for collective action
 - Institutions that govern credit/insurance
- Nothing to say these have to be <u>traps</u>, however
 - Brings us back to traps vs slow transitions

c. From poverty traps to "rigidities" and constraints and structural transformation

> My made up term and category "Things that slow transition to the frontier"

It's not clear we need "traps"

- Could be as simple as slow transitions (over some range)
 - Low initial levels of development
 - Below steady state
 - Some constraint slows pace of accumulation
 - e.g. self control, financial market imperfections, migration costs, monitoring costs, contacting difficulties, etc
 - Can, but do not necessarily, involve IRTS
- Common variety: "structural change" models
 - e.g. Lewis model
- Empirically rigidities are going to be difficult to distinguish from traps

Stylized example

 k_t

Classic model of structural change: The "Lewis model of unlimited labor supplies" (see Todaro Smith Ch 3 and Acemoglu MEG 21.3)

- Dual economy model that describes process of "structural change"
 - Shift from rural (R) agricultural production to urban (U) manufacturing
- Central assumption: Rural labor supply is completely elastic (unlimited)
 - Fixed, subsistence rural agricultural wage (w_R)
 - Why? Imagine linear agricultural production: $Y = \beta L_R$
 - In labor market equilibrium, marginal product of labor (MPL) equals the wage: $w_R = \frac{\partial Y}{\partial L_R} = \beta$
 - Large population = surplus labor at that wage level
 - Population may also produce Y_U for wages w_U
 - So long as $w_U > w_R$, rural workers will work elastically at w_U
- Simple application: Chinese urban wages will not begin to rise until the surplus rural labor is absorbed into production

Labor supply and demand in the Lewis model

- Labor supply L_s assumed to be flat (perfectly elastic) for some range of L_U , paying $w_U > w_R$
- Labor demand curves represent marginal product of labor in urban industry

Each labor demand curve corresponds to production with increasing K

Now introduce barriers to migration Acemoglu MEG 21.3

- Suppose migration from rural areas to urban is restricted to some small fraction μ per period: $\Delta L_U = \mu L_{Ut}$
- In effect, this makes L_s perfectly inelastic in the very short run, though still perfectly elastic in long run
- Will restrain growth, even when capital is increasing

In the short run (SR), there may be too little urban labor, depressing output growth

Informal institutions as a barrier to migration?

Banerjee and Newman 1998, Acemoglu and Zilibotti 1999, Acemoglu MEG 21.3

- Urban economy is more productive, but have severe credit and insurance problems
 - Social networks less dense, more diffuse, easy to escape
 - Formal legal and financial institutions still shallow
- Rural economy has lower productivity but is less affected by information asymmetries and commitment problems
 - Better able to observe effort or type
 - Norms and local institutions can reward/enforce behavior
 - Allows more sophisticated contracts
 - Hence credit and insurance markets function better
- Slows down growth of modern sector

d. Traps, rigidities, and institutions

Where does politics come into play?

Why constraints, rigidities and traps matter

- Constraints and rigidities can manifest themselves as:
 - 1. Costly transactions
 - Large, depersonalized markets will be imperfect (e.g. credit, insurance)
 - 2. Behavior: e.g. People are boundedly rational
 - Decisions are shaped by their subjective experience, deduction, and intergenerational transmission of knowledge, values and customs
 - These mental models shape individual action, and are path dependent
- Institutions matter in both cases
 - They have the potential to reduce transactions costs, or determine how well inefficiencies are resolved
- Studying them helps us understand why institutions and behavior vary
 - Some institutional equilibria may be inefficient and persistent
 - In general, the relationship between these local and often informal institutions is underexplored

Other potential political-institutional roots of traps or rigidities (relatively underexplored)

- Corruption
 - Bardhan 1997
- Kinship systems
 - E.g. Hoff and Sen 2004, Jakiela and Ozier 2012
- Informal property rights enforcement and investment
 - Most studies are of formal property rights (e.g. title)
 - Will explore Week 5
- Clientelism, violence, local collective action & public goods, etc...